某工厂有名工人,现接受了生产
台
型高科技产品的总任务.已知每台
型产品由
个
型装置和
个
型装置配套组成,每个工人每小时能加工
个
型装置或
个
型装置.现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组).设加工
型装置的工人有
人,他们加工完
型装置所需时间为
,其余工人加工完
型装置所需时间为
(单位:小时,可不为整数).
(1)写出、
的解析式;
(2)写出这名工人完成总任务的时间
的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?
(本小题满分12分)
某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;
(11)在(1)的条件下,将等级系数为4的3件日用品记为x1, x2, x3,等级系数为5的2件日用品记为y1,y2,现从x1, x2, x3, y1, y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
(本小题满分12分)
已知等差数列{an}中,a1=1,a3=-3.
(I)求数列{an}的通项公式;
(II)若数列{an}的前k项和Sk=-35,求k的值.
设不等式
的解集为
.
(I)求集合
;
(II)若
,试比较
与
的大小.
在直接坐标系
中,直线
的方程为
,曲线
的参数方程为
.
(I)已知在极坐标(与直角坐标系
取相同的长度单位,且以原点
为极点,以x轴正半轴为极轴)中,点
的极坐标为
,判断点
与直线
的位置关系;
(II)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
设矩阵
(其中
).
(I)若
,求矩阵M的逆矩阵
;
(II)若曲线
在矩阵M所对应的线性变换作用下得到曲线
,求
的值.