已知.
(1)当时,求曲线
在点
处的切线方程;
(2)若在
处有极值,求
的单调递增区间;
(3)是否存在实数,使
在区间
的最小值是3,若存在,求出
的值;若不存在,说明理由.
选修4-5:不等式选讲
设函数=
,
.不等式
的解集为
.
(1)求;
(2)若存在,使得
,求实数
的取值范围;
(本小题满分10分)选修:4-4:坐标系与参数方程
已知:圆的参数方程为
,圆
的极坐标方程为
,
(1)求圆的普通方程与圆
的直角坐标方程;
(2)若圆与圆
外切,求实数
的值;
(本小题满分10分)选修4-1几何证明选讲
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明: AD·DE=2PB2.
已知函数
(Ⅰ)若函数在
上位增函数,求
的取值范围.
(Ⅱ)求在区间
上的最小值;
(Ⅲ)若在区间
上恰有两个零点,求
的取值范围.
已知椭圆:
的离心率为
,右顶点
是抛物线
的焦点.直线
:
与椭圆
相交于
,
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果,点
关于直线
的对称点
在
轴上,求
的值.