已知函数,,其中为常数,,函数和的图像在它们与坐标轴交点处的切线分别为、,且.(1)求常数的值及、的方程;(2)求证:对于函数和公共定义域内的任意实数,有;(3)若存在使不等式成立,求实数的取值范围.
设的内角所对的边长分别为,且. (1)求的值; (2)求的最大值.
在数列中,,. (1)设,求数列的通项公式; (2)求数列的前项和.
四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点. (1)求证:AD⊥PE; (2)求二面角E-AD-G的正切值.
求函数的最大值与最小值.
如图:长方形所在平面与正所在平面互相垂直,分别为的中点. (Ⅰ)求证:平面; (Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 的位置,并证明你的结论;若不存在,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号