(本小题满分14分)在直角坐标系中,以
为极点,
轴的正半轴为极轴建立极坐标系.己知圆
的圆心的极坐标为
半径为
,直线
的参数方程为
为参数)
(Ⅰ)求圆C的极坐标方程;直线的普通方程;
(Ⅱ)若圆C和直线相交于A,B两点,求线段AB的长.
(本小题满分14分)
已知条件:
条件:
(Ⅰ)若,求实数
的值;
(Ⅱ)若是
的充分条件,求实数
的取值范围.
(本小题满分15分)
设椭圆的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过三点的圆恰好与直线
相切,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
(本小题满分15分)
如图,已知四棱锥中,平面
平面
,平面
平面
,
为
上任意一点,
为菱形
对角线的交点.
(Ⅰ)证明:平面平面
;
(Ⅱ)若,三棱锥
的体积是四棱锥
的体积的
,二面角
的大小为
,求
(本小题满分14分)
在直角坐标系中,以
为极点,
轴的正半轴为极轴建立极坐标系.己知圆
的圆心的
极坐标为半径为
,直线
的参数方程为
为参数)
(Ⅰ)求圆C的极坐标方程;直线的普通方程;
(Ⅱ)若圆C和直线相交于A,B两点,求线段AB的长.