已知函数(其中
的最小正周期为
.
(Ⅰ)求的值,并求函数
的单调递减区间;
(Ⅱ)在锐角中,
分别是角
的对边,若
的面积为
,求
的外接圆面积.
(本小题满分分)
设△ABC的内角A,B,C所对的边分别为,
,
,且
。
(Ⅰ)求角A的大小;
(Ⅱ)若=1,求△ABC的周长l的取值范围。
.已知
(Ⅰ)如果函数的单调递减区间为
,求函数
的解析式;
(Ⅱ)对一切的,
恒成立,求实数
的取值范围
为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔
热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
(0
x
10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知数列,计算
,猜想
的表达式,并用数学归纳法证明猜想的正确性
设.
(1)求函数的单调区间;
(2)若当时
恒成立,求
的取值范围。