已知椭圆的中心在原点,离心率,右焦点为.(1)求椭圆的方程;(2)设椭圆的上顶点为,在椭圆上是否存在点,使得向量与共线?若存在,求直线的方程;若不存在,简要说明理由.
在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点. (Ⅰ)写出C的方程; (Ⅱ)若,求k的值; (Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.
如图,在四棱锥中,底面是矩形.已知. (1)证明平面; (2)求二面角的正切值.
已知函数. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,讨论的单调性.
已知椭圆的中心在坐标原点,焦点在x轴上,且经过点,离心率为. (Ⅰ)求椭圆P的方程; (Ⅱ)是否存在过点的直线交椭圆于点、,且满足.若存在,求直线的方程;若不存在,说明理由.
设函数 (Ⅰ)求的值; (Ⅱ)求的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号