如图,在△中,
,
,
为
的中点,沿
将△
折起到△
的位置,使得直线
与平面
成
角。
(1)若点到直线
的距离为
,求二面角
的大小;
(2)若,求
边的长。
(本小题满分14分)已知曲线:
(其中
为自然对数的底数)在点
处的切线与
轴交于点
,过点
作
轴的垂线交曲线
于点
,曲线
在点
处的切线与
轴交于点
,过点
作
轴的垂线交曲线
于点
,……,依次下去得到一系列点
、
、……、
,设点
的坐标为
(
).(Ⅰ)分别求
与
的表达式;(Ⅱ)设O为坐标原点,求
(本小题满分14分)已知曲线;(1)由曲线C上任一点E向X轴作垂线,垂足为F,
。问:点P的轨迹可能是圆吗?请说明理由;(2)如果直线L的斜率为
,且过点
,直线L交曲线C于A,B两点,又
,求曲线C的方程。
(本小题满分14分)
如图所示,已知曲线交于点O、A,直线
与曲线
、
分别交于点D、B,连结OD,DA,AB.
(1)求证:曲边四边形ABOD(阴影部分:OB
为抛物线弧)的面积的函数表达
式为
(2)求函数在区间
上的最大值.
(本小题满分12分)中央电视台《同一首歌》大型演唱会曾在我市湄洲岛举行,之前甲、乙两人参加大会青年志愿者的选拔.已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题。规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选(两人独立答题)。(Ⅰ)求甲答对试题数ξ的概率分布(列表)及数学期望;(Ⅱ)求甲、乙两人至少有一人入选的概率(设甲、乙两人考试合格的事件分别为A、B).