如果项数均为的两个数列
满足
且集合
,则称数列
是一对“
项相关数列”.
(Ⅰ)设是一对“4项相关数列”,求
和
的值,并写出一对“
项相
关数列”;
(Ⅱ)是否存在“项相关数列”
?若存在,试写出一对
;若不存在,请说明理由;
(Ⅲ)对于确定的,若存在“
项相关数列”,试证明符合条件的“
项相关数列”有偶数对.
已知函数=
(1)若-2(a,b∈Z),求等式
>0的解集为R的概率;
(2)若,求方程
=0两根都为负数的概率.
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+)
(1)证明:数列{an+1-an }是等比数列;
(2)求数列{an}的通项公式
(本小题满分14分)
如图所示,椭圆C:的两个焦点为
、
,短轴两个端点为
、
.已知
、
、
成等比数列,
,与
轴不垂直的直线
与C 交于不同的两点
、
,记直线
、
的斜率分别为
、
,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证直线与
轴相交于定点,并求出定点坐标;
(Ⅲ)当弦的中点
落在四边形
内(包括边界)时,求直线
的斜率的取值范围.
(本小题满分12分)
函数,其中
.
(Ⅰ)试讨论函数的单调性;
(Ⅱ)已知当(其中
是自然对数的底数)时,在
上至少
存在一点,使
成立,求
的取值范围;
(Ⅲ)求证:当时,对任意
,
,有
.
(本小题满分12分)
已知是各项都为正数的数列,其前
项和为
,且满足
.
(Ⅰ)求,
,
的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)令=
,求证
.