电路如图所示,电源电动势E=28 V,内阻r=2 Ω,电阻R1=12 Ω,R2=R4=4 Ω,R3=8 Ω,C为平行板电容器,其电容C=3.0 pF,虚线到两极板距离相等,极板长l=0.20 m,两极板的间距d=1.0×10-2 m。
(1)若开始时开关S处于断开状态,则当其闭合后,求流过R4的总电量为多少?
(2)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0 m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取10m/s2)
如图所示,竖直平面内四分之一光滑圆弧轨道AP和水平传送带PC相切于P点,圆弧轨道的圆心为O,半径为R=5m。一质量为m=2kg的小物块从圆弧顶点由静止开始沿轨道下滑,再滑上传送带PC,传送带可以速度v=5m/s沿顺时针或逆时针方向的传动。小物块与传送带间的动摩擦因数为,不计物体经过圆弧轨道与传送带连接处P时的机械能损失,重力加速度为g=10m/s2。
(1)求小物体滑到P点时对圆弧轨道的压力;
(2)若传送带沿逆时针方向传动,物块恰能滑到右端C,问传送带PC之间的距离L为多大:
如图(甲),MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 0.5T。质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r。现从静止释放杆a b,测得最大速度为vm。改变电阻箱的阻值R,得到vm与R的关系如图(乙)所示。已知轨距为L = 2m,重力加速度g=l0m/s2,轨道足够长且电阻不计。
(1)当R =0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;
(2)求金属杆的质量m和阻值r;
(3)求金属杆匀速下滑时电阻箱消耗电功率的最大值Pm。
如图所示,足够长的木板质量,放置于光滑水平地面上,以初速度
沿水平地面向右匀速运动.现有足够多的小铁块,它们的质量均为m=lkg,在木板上方有一固定挡板,当木板运动到其最右端位于挡板正下方时,将一小铁块贴着挡板无初速地放在木板上,小铁块与木板的上表面间的动摩擦因数
,当木板运动了
时,又无初速地贴着挡板在第1个小铁块上放上第2个小铁块,只要木板运动了
就按同样的方式再放置一个小铁块,直到木板停止运动.(取g=l0m
),试问:
(1)第1个铁块放上后,木板运动了L时,木板的速度多大?
(2)最终木板上放有多少个铁块?
(3)最后一个铁块放上后,木板再向右运动的距离是多少?
如图所示,长度为L=1.0m的细绳,栓着一质量m=1Kg的小球在竖直平面内做圆周运动,小球半径不计,已知绳子能够承受的最大张力为74N,圆心离地面高度h="6m" ,运动过程中绳子始终处于蹦紧状态。求:
(1)分析小球在何处绳子易断,绳断时小球的线速度。
(2)绳子断后小球做平抛运动的时间和落地点与抛出点间的距离。
如图所示,小球被轻质细绳系住斜吊着放在静止的光滑斜面上,小球质量m=1kg,斜面倾角θ=30°,悬线与竖直方向夹角α=30°,光滑斜面M=3kg置于粗糙水平面上,g=10 m/s2,求:
(1)悬线对小球拉力的大小。
(2)地面对斜面的摩擦力的大小和方向。