(本题8分).如图所示,为一传送装置,其中AB段粗糙,AB段长为L=0.2 m,动摩擦因数μ=0.6,BC、DEN段均可视为光滑,且BC的始、末端均水平,具有h=0.1 m的高度差,DEN是半径为r=0.4 m的半圆形轨道,其直径DN沿竖直方向,C位于DN竖直线上,CD间的距离恰能让小球自由通过.在左端竖直墙上固定一轻质弹簧,现有一可视为质点的小球,小球质量m=0.2 kg,压缩轻质弹簧至A点后由静止释放(小球和弹簧不粘连),小球刚好能沿DEN轨道滑下.求:
(1)小球到达N点时的速度;
(2)压缩的弹簧所具有的弹性势能。
如图所示,内半径为R的光滑圆轨道竖直放置,长度比2R稍小的轻质杆两端各固定一个可视为质点的小球A和B,把轻杆水平放入圆形轨道内,若mA=2m、mB=m,重力加速度为g,现由静止释放两球使其沿圆轨道内壁滑动,当轻杆到达竖直位置时,求:
(1)A、B两球的速度大小;
(2)A球对轨道的压力;
某球形天体的密度为ρ0,引力常量为G.
(1)证明对环绕密度相同的球形天体表面运行的卫星,运动周期与天体的大小无关.(球的体积公式为,其中R为球半径)
2)若球形天体的半径为R,自转的角速度为,表面周围空间充满厚度
(小于同步卫星距天体表面的高度)、密度ρ=
的均匀介质,试求同步卫星距天体表面的高度.
从地面上以初速度v0="10" m/s竖直向上抛出一质量为m="0.2" kg的球,若运动过程中受到的空气阻力与其速率成正比关系,球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,落地时速率为v1="2" m/s,且落地前球已经做匀速运动.(g=10m/s2)求:
(1)球从抛出到落地过程中克服空气阻力所做的功;
(2)球抛出瞬间的加速度大小;
一列货车以28.8km/h的速度在铁路上运行。由于调度事故,在其后面有一列快车以72km/h的速度在同一轨道上同向驶来。快车司机发现货车时两车相距600m,他立即合上制动器刹车,但快车要滑行2km才能停下来。请你判断两车是否会相撞,并说明理由。
如图所示,光滑斜面的倾角为θ。质量为m的小球被细线系在斜面上,细线水平。求小球受到的斜面的支持力和细线的拉力的大小。