(本题12分)如图所示,一质量为,长为
的木板放在水平地面上,已知木板与地面间的动摩擦因数为
,在此木板的右端上还有一质量为
的小物块,且视小物块为质点,木板厚度不计。今对木板突然施加一个
的水平向右的拉力,
.
(1)若木板上表面光滑,则小物块经多长时间将离开木板?
(2)若小物块与木板间的动摩擦因数为、小物块与地面间的动摩擦因数为
,小物块相对木板滑动一段时间后离开木板继续在地面上滑行,且对地面的总位移
时停止滑行,求
值.
如图所示,天花板上有固定转轴O,长为L的轻杆一端可绕转轴O在竖直平面内自由转动,另一端固定一质量为M的小球。一根不可伸长的足够长轻绳绕过定滑轮A,一端与小球相连,另一端挂着质量为m1的钩码,定滑轮A的位置可以沿OA连线方向调整。小球、钩码均可看作质点,不计一切摩擦,g取10m/s2。
(1)若将OA间距调整为L,则当轻杆与水平方向夹角为30º时小球恰能保持静止状态,求小球的质量M与钩码的质量m1之比;
(2)若在轻绳下端改挂质量为m2的钩码,且M:m2=4:1,并将OA间距调整为L,然后将轻杆从水平位置由静止开始释放,求小球与钩码速度大小相等时轻杆与水平方向的夹角θ;
(3)在(2)的情况下,测得杆长L=2.175m,仍将轻杆从水平位置由静止开始释放,当轻杆转至竖直位置时,小球突然与杆和绳脱离连接而向左水平飞出,求当钩码上升到最高点时,小球与O点的水平距离。
成都七中某课外兴趣小组同学为了研究过山车的原理,提出了下列设想:取一个与水平方向夹角为37°、长L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个质量m=1kg的小物块以初速度v0=4.0m/s,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数μ="0.50" (g取10m/s,sin37°="0.60" ,cos37°=0.80)求:
(1)小物块的抛出点和A点的高度差;
(2)若小物块刚好能在竖直圆弧轨道上做完整圆周运动,求小物块在D点对圆弧轨道的压力;
(3)为了让小物块不脱离轨道,则竖直圆轨道的半径应该满足什么条件。
已知O、A、B、C为同一直线上的四点,AB间的距离为l1,BC间的距离为l2,一物体自O点由静止出发,沿此直线做匀变速运动,依次经过A、B、C三点,已知物体通过AB段与BC段所用的时间相等,求O与A的距离。
黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期T。
(1)可见星A所受暗星B的引力可等效为位于O点处质量为
的星体(视为质点)对它的引力,设A和B的质量分别为
、
,试求
(用
、
表示);
(2)求暗星B的质量与可见星A的速率v、运行周期T和质量
之间的关系式;
(3)恒星演化到末期,如果其质量大于太阳质量的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6
,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,ms=2.0×1030kg)
如图,半径为R的光滑半圆形轨道ABC在竖直平面内,与水平轨道CD相切于C 点,D端有一被锁定的轻质压缩弹簧,弹簧左端连接在固定的挡板上,弹簧右端Q到C点的距离为2R。质量为m的滑块(视为质点)从轨道上的P点由静止滑下,刚好能运动到Q点,并能触发弹簧解除锁定,然后滑块被弹回,且刚好能通过圆轨道的最高点A。已知∠POC=60°,求:
1.滑块与水平轨道间的动摩擦因数μ;
2.弹簧被锁定时具有的弹性势能。