一质量为m=2.0kg的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中并从物块中穿过,如图1所示。固定在传送带右端的位移传感器纪录了小物块
被击中后的位移随时间的变化关系如图2所示(图象前3s内为二次函数,3-4.5s内为
一次函数,取向左运动的方向为正方向)。已知传送带的速度保持不变,g取10 m/s2,求:
(1)定性描述小物块在前3s内的运动情况
(2)传送带速度v的大小和方向
(3)物块与传送带间的动摩擦因数μ
如图所示,可视为质点的物块A、B、C放在倾角为37O、足够长的光滑、绝缘斜面上,斜面固定。A与B紧靠在一起,C紧靠在固定挡板上。物块的质量分别为mA=0.8kg、mB=0.4kg。其中A不带电,B、C的带电量分别为qB=+4×10-5C、qC=+2×10-5C,且保持不变。开始时三个物块均能保持静止。现给A施加一平行于斜面向上的力F,使A、B一起在斜面上做加速度为a=2m/s2的匀加速直线运动。经过一段时间物体A、B分离。(如果选定两点电荷在相距无穷远处的电势能为0,则相距为r时,两点电荷具有的电势能可表示为。已知sin37O=0.6,cos37O=0.8,g=10m/s2,静电力常量
)求:
(1)未施加力F时物块B、C间的距离;
(2)A、B分离前A上滑的距离;
(3)A、B分离前力F所做的功。
风洞实验室能产生大小和方向均可改变的风力。如图所示,在风洞实验室中有足够大的光滑水平面,在水平面上建立xOy直角坐标系.质量m=0.5kg的小球以初速度v0=0.40m/s从O点沿x轴正方向运动,在0-2.0s内受到一个沿y轴正方向、大小F1=0.20N的风力作用;小球运动2.0s后风力变为F2(大小求知),方向为y轴负方向,又经过2.0s小球回到x轴。求
(1)2.0s末小球在y方向的速度;
(2)风力F2作用多长时间后,小球的速度变为与初速度相同;
(3)小球回到x轴上时的动能。
如图,光滑水平面上存在水平向右、场强为E的匀强电场,电场区域宽度为L。质量为m、带电量为+q的物体A从电场左边界由静止开始运动,离开电场后与质量为2m的物体B碰撞并粘在一起,碰撞时间极短。B的右侧拴接一处于原长的轻弹簧,弹簧右端固定在竖直墙壁上(A、B均可视为质点)。求
(1)物体A在电场中运动时的加速度大小;
(2)物体A与B碰撞过程中损失的机械能;
(3)弹簧的最大弹性势能。
如图所示,半圆玻璃砖的半径R=10cm,折射率为,直径AB与屏幕垂直并接触于A点.激光a以入射角i=30°。射向半圆玻璃砖的圆心O,结果在水平屏幕MN上出现两个光斑.求两个光斑之间的距离.
如图所示,高为H的导热气缸竖直固定在水平地面上,横截面积为S、重力为G的“⊥”形活塞封闭着一定质量的理想气体,活塞离缸底高为h.现手持“⊥”形活塞上端,缓慢竖直上提活塞,当活塞上升至气缸上端口时,求竖直上提的力F大小.已知:大气压强为p0,不考虑活塞与气缸之间的摩擦及温度的变化,不计活塞及气缸壁的厚度.