数列前
项和
,数列
满足
(
),
(1)求数列的通项公式;
(2)求证:当时,数列
为等比数列;
(3)在题(2)的条件下,设数列的前
项和为
,若数列
中只有
最小,求
的取值范围.
已知函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)是否存在实数,使得函数
有唯一的极值,且极值大于
?若存在,,求
的取值
范围;若不存在,说明理由;
(Ⅲ)如果对,总有
,则称
是
的凸
函数,如果对,总有
,则称
是
的凹函数.当
时,利用定义分析
的凹凸性,并加以证明。
设椭圆的离心率
右焦点到直线
的距离
,
为坐标原点。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直线
的距离为定值,并求弦
长度的最小值.
如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成
(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,
求的取值范围,使得二面角P-AD-M为钝二面角。
已知等差数列的前
项和为
,等比数列
的前
项和为
,它们满足
,
,
,且当
时,
取得最小值.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)令,如果
是单调数列,求实数
的取值范围.
(Ⅰ)求函数
图像的对称轴方程;
(Ⅱ)设的三个角
所对的边分别是
,且
,
成公差大于
的等差数列,求的值.