太阳围绕银河系中心的运动可视为匀速圆周运动,其运动速度约为地球公转速度的7倍,轨道半径约为地球公转道半径的2×109倍,为了粗略估算银河系中恒星的数目,可认为银河系中所有恒星的质量都集中在银河系中心,且银河系中恒星的平均质量约等于太阳质量,则银河系中恒星数目约为( )
A.109 | B.1011 | C.1013 | D.1015 |
如图,穿在水平直杆上质量为m的小球开始时静止.现对小球沿杆方向施加恒力F0,垂直于杆方向施加竖直向上的力F,且F的大小始终与小球的速度成正比,即F=kυ(图中未标出).已知小球与杆间的动摩擦因数为μ,已知小球运动过程中未从杆上脱落,球上小孔直径略大于直杆直径,且F0>μmg.下列说法正确的是:()
A.小球先做加速度减小的加速运动,后做加速度增大的减速运动直到静止 |
B.小球先做加速度增大的加速运动,后做加速度减小的加速运动,直到最后做匀速运动 |
C.小球的最大加速度为![]() |
D.恒力F0的最大功率为![]() |
在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。下列叙述符合史实的是
A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系 |
B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说 |
C.法拉第实验时观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流 |
D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化 |
如图所示,质量分别为m1=2kg,m2=3kg的二个物体置于光滑的水平面上,中间用一轻弹簧秤连接。水平力F1=30N和F2=20N分别作用在m1和m2上。当两物体以相同速度一起运动时,以下叙述正确的是:
A.弹簧秤的示数是10N。 |
B.弹簧秤的示数是50N。 |
C.在同时撤出水平力F1、F2的瞬时,m1加速度的大小13m/s2。 |
D.在只撤去水平力F1的瞬间,m2加速度的大小为4m/s2。 |
如图所示,MPQO为有界的竖直向下的匀强电场(边界上有电场),电场强度为E=mg/q,ACB为光滑固定的半圆形轨道,轨道半径为R,A、B为圆水平直径的两个端点,AC为圆弧。一个质量为m,电荷量为-q的带电小球,从A点正上方高为H=R处由静止释放,并从A点沿切线进入半圆轨道,不计空气阻力及一切能量损失,关于带电小球的受力及运动情况,下列说法正确的是()
A.小球到达C点时对轨道压力为3 mg
B.小球在AC部分运动时,加速度不变
C.适当增大E,小球到达C点的速度可能为零
D.若E=2mg/q,要使小球沿轨道运动到C,则应将H至少调整为3R/2
一物体静止在地面上,在竖直方向的拉力作用下开始向上运动(不计空气阻力).在向上运动的过程中,以地面为参考平面,物体的机械能E与上升高度h的关系图象如图7所示,其中0-h1过程的图线是过原点的直线,h1~h2过程的图线为平行于横轴的直线.则
A.在0~h2上升过程中,物体先做加速运动,后做匀速运动 |
B.在0~h1上升过程中,物体的加速度不断增大 |
C.在0~hl上升过程中,拉力的功率保持不变 |
D.在h1~h2上升过程中,物体处于完全失重状态 |