可视为质点的小球A、B静止在光滑水平轨道上,A的左边固定有轻质弹簧,B与弹簧左端接触但不拴接,A的右边有一垂直于水平轨道的固定挡板P。左边有一小球C沿轨道以某一初速度射向B球,如图所示,C与B发生碰撞并立即结成一整体D,在它们继续向右运动的过程中,当 D和A的速度刚好相等时,小球A恰好与挡板P发生碰撞,碰后A立即静止并与挡板P粘连。之后D被弹簧向左弹出,D冲上左侧与水平轨道相切的竖直半圆光滑轨道,其半径为
,D到达最高点Q时,D与轨道间弹力
。已知三小球的质量分别为
、
。取
,求:
(1)D到达最高点Q时的速度
的大小;
(2)D由Q点水平飞出后的落地点与Q点的水平距离s;
(3)C球的初速度
的大小。
(14分) 如图所示,足够长的两根相距为0.5m的平行光滑导轨竖直放置,导轨电阻不计,磁感应强度B为0.8T的匀强磁场的方向垂直于导轨平面。两根质量均为0.04kg、电阻均为0.5Ω的可动金属棒
和
都与导轨始终接触良好,导轨下端连接阻值为1Ω的电阻R,金属棒
用一根细绳拉住,细绳允许承受的最大拉力为0.64N。现让
棒从静止开始落下,直至细绳刚被拉断时,此过程中电阻R上产生的热量为0.2J,(g=10m/s2)求:
(1)此过程中
棒和
棒产生的热量
和
;
(2)细绳被拉断瞬时,
棒的速度
。
(3)细绳刚要被拉断时,
棒下落的高度
。
如图所示,水平放置的两块长直平行金属板a、b相距d=0.10m,a、b间的电场强度为E=5.0×105N/C,b板下方整个空间存在着磁感应强度大小为B=6.0T、方向垂直纸面向里的匀强磁场.今有一质量为m=4.8×10-25kg、电荷量为q=1.6×10-18C的带正电的粒子(不计重力),从贴近a板的左端以v0 =1.0×106m/s的初速度水平射入匀强电场,刚好从狭缝P处穿过b板而垂直进入匀强磁场,最后粒子回到b板的Q处(图中未画出).求P、Q之间的距离L.
一足够长的矩形区域abcd内充满磁感应强度为B,方向垂直纸面向里的匀强磁场,矩形区域的左边界ad宽为L,现从ad中点O垂直于磁场射入一带电粒子,速度大小为v0方向与ad边夹角为30°,如图所示。已知粒子的电荷量为q,质量为m(重力不计)。
(1)若粒子带负电,且恰能从d点射出磁场,求v0的大小;
|
(2)若粒子带正电,使粒子能从ab边射出磁场,求v0的取值范围以及在该范围内粒子在磁场中运动时间t的范围。
如图所示,一个100匝的圆形线圈(图中只画了2匝),面积为200cm2,线圈的电阻为1Ω,在线圈外接一个阻值为4Ω的电阻和一个理想电压表。线圈放入方向垂直线圈平面指向纸内的匀强磁场中,磁感强度随时间变化规律如B-t图所示,求:
(1)t=3s时穿过线圈的磁通量。
(2)t=5s时,电压表的读数。
如图,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平面上的O点,此时弹簧处于原长。另一质量与B相同的滑块A从P点以初速度v0向B滑行,当A滑过距离l时,与B相碰。碰撞时间极短,碰后A、B粘在一起运动。设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ。重力加速度为g。求:
(1)碰后瞬间,A、B共同的速度大小;
(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量。