某校要从初三(1)班和初三(2)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)
三(1)班:168 167 170 165 168 166 171 168 167 170
三(2)班:165 167 169 170 165 168 170 171 168 167
(1)补充完成下面的统计分析表:
班级 |
平均数 |
方差 |
中位数 |
极差 |
三(1)班 |
168 |
|
168 |
6 |
三(2)班 |
168 |
3.8 |
|
|
(2)结合上述统计表你认为哪一个班女生能被选取,请说明理由.
已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.
已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.
甲、乙、两三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.
①取出的3个球恰好是2个红球和1个白球的概率是多少?
②取出的3个球全是白球的概率是多少?
某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:
(1)在这次调查活动中,一共调查了 名学生;
(2)“足球”所在扇形的圆心角是 度;
(3)补全折线统计图.
(10分)如图1,O为正方形ABCD的中心,
分别延长OA、OD到点F、E,使OF=2OA,
OE=2OD,连接EF.将△EOF绕点O逆时针
旋转角得到△E1OF1(如图2).
(1)探究AE1与BF1的数量关系,并给予证明;
(2)当=30°时,求证:△AOE1为直角三角形.