颜色由两对基因( A和a,B和b)控制,其中一对基因控制色素的合成,另一对基因控制颜色的深浅,其花的颜色与基因型的对应关系见下表,请回答下列问题.(丰集)
基因组合 |
A__Bb |
A__bb |
A__BB或aa__ __ |
花的颜色 |
粉色 |
红色 |
白色 |
(1)纯合白花植株和纯合红花植株做亲本进行杂交,产生的子一代花色全是红色,则亲代白花的基因型____________。
(2)探究两对基因( A和a,B和b)的遗传是否符合基因的自由组合定律,某课题小组选用基因型为AaBb的植株进行测交。
实验步骤:
第一步:对基因型为AaBb的植株进行测交。
第二步:观察并统计子代植株花的颜色和比例。
预期结果及结论:
①若子代花色及比例为____________________,则两对基因的遗传符合基因的自由组合定律,可表示为下图第一种类型(竖线表示染色体,黑点表示基因在染色体上的位置)。
②若子代植株花色出其他分离比,则两对基因的遗传不符合基因的自由组合定律。请在答题卡的图示方框中补充其它两种类型。
(3)上述两对基因的遗传符合自由组合定律,则基因型为AaBb的植株自交后代中,粉花植株的基因型有 _种。
(4)等位基因A和a影响花瓣的大小,基因型AA表现为大花瓣,Aa表现为小花瓣,aa表现为无花瓣。另有一对等位基因R和r影响花瓣的颜色,基因型RR和Rr表现为红色花瓣,rr表现为无色花瓣。两个植株双杂合子杂交,则下一代表现型有 种。
玉米与其他植物间行种植称为间作,单独种植玉米称为单作。玉米与大豆间作可增产(已知玉米株高大于大豆)。下图是玉米与大豆间作和玉米单作在不同光照强度下测得的单株玉米吸收CO2的速率(假设间作与单作农作物间的株距、行距均相同)。请分析回答下列问题:
(1)光照强度为a时,间作和单作光合速率无明显差别,导致该现象的主要原因是_____________。
(2)光照强度为c时,间作的光合速率比单作高,从环境角度分析,间作时对______和_____的利用优于单作。
(3)光照强度为b时,单作玉米的叶绿体固定CO2的速率为________µmol·m-2·s-1。
(4)光照强度为d时,玉米间作时每个叶肉细胞中产生的[H]和ATP的量比单作时________(多、少、相等)。
在牧草中,白花三叶草有两个稳定遗传的品种,叶片内含氰(HCN)的和不含氰的。现已研究查明,白花三叶草叶片内的氰化物是经右图生化途径产生的:
基因D、R分别决定产氰糖苷酶和氰酸酶的合成,d、r无此功能,两对基因位于两对同源染色体上。现有两个不产氰的品种杂交,F1全部产氰,F1ht@tp://www.wln100.com 未来脑教学云平台+%?自交得F2,F2中有产氰的,也有不产氰的。将F2各表现型的叶片提取液作实验,实验时在提取液中分别加入含氰糖苷和氰酸酶,然后观察产氰的情况,结果记录于下表
(1)亲本中两个不产氰品种的基因型是_________,在F2中产氰和不产氰的理论比为_________
(2)品种Ⅱ叶肉细胞中缺乏_______酶,品种Ⅲ可能的基因型是___________。
(3)如果在F1植株的花药中出现图a所示的细胞,最可能的原因是_________
(4)现有两个突变品种DdRR和DDRr(种子),要在最短时间内获得能稳定遗传的无氰品种ddrr(植株),步骤如下:
a.______________________________
b.______________________________;
c.再将所收获的种子播种,长成植株后,通过叶片的提取液中分别加入______的方法即可从F2中找出基因型为ddrr的植株。
下图为某家庭遗传系谱图,Ⅲ-9与Ⅲ-10为异卵双生的双胞胎,Ⅲ-13与Ⅲ-14为同卵双生的双胞胎。已知β珠蛋白生成障碍性贫血病为常染色体隐性遗传病,由A、a基因控制;眼白化病为伴X染色体隐性遗传病,由B、b基因控制。请据图回答下面的问题。
(1)据图判断,图右标注的②是患_____的女性,该病的遗传方式是________图右标注的③是患________的男性。
(2)Ⅱ-8号个体是杂合子的概率是________。
(3)Ⅲ-12的基因型可能是________,Ⅲ-9与Ⅲ-10基因型相同的概率为________,Ⅲ-13与Ⅲ-14基因型相同的概率为________。
(4)若Ⅲ-9与Ⅲ-13婚配,所生子女中只患一种病的概率是________,同时患两种病的概率是________。
(5)通过基因诊断等手段,可以对胎儿是否患某种遗传病或先天性疾病进行__
______。
为获取高性能碱性淀粉酶,兴趣小组的同学在科研人员的帮助下进行了如下实验。回答相关问题:
[实验目的]比较甲、乙、丙三种微生物所产生的淀粉酶的活性
[实验原理]略。
[实验材料]科研人员提供的三种微生物淀粉酶提取液(提取液中酶浓度相同)等
[实验步骤]
(1)取四支试管,分别编号。
(2)在下表各列的字母位置,填写相应试剂的体积量(mL),并按表内要求完成操作。
试管1 |
试管2 |
试管3 |
试管4 |
|
蒸馏水 |
2 |
2 |
2 |
A |
pH=8缓冲液 |
0.5 |
0.5 |
0.5 |
0.5 |
淀粉溶液 |
1 |
1 |
1 |
1 |
甲生物提取液 |
0.3 |
|||
乙生物提取液 |
0.3 |
|||
丙生物提取液 |
0.3 |
|||
总体积 |
3.8 |
3.8 |
3.8 |
B |
(3)将上述四支试管放入37℃的水浴,保温1小时。
(4)在上述四支试管冷却后滴入碘液。
(5)观察比较实验组的三支试管与对照组试管的颜色及其深浅。
[实验结果](“+”表示颜色变化的深浅,“—”表示不变色)
试管1 |
试管2 |
试管3 |
试管4 |
|
颜色深浅程度 |
++ |
— |
+ |
C |
请回答下列问题:
(1)填写表中的数值:A为________,C的颜色深浅程度为__________(用“+”或“-”表示)。
(2)该实验的自变量是_____________,无关变量有________________(至少写出2种)。
(3)除了用碘液检验淀粉的剩余量来判断实验结果外,还可以用___________试剂来检测生成物。若用该试剂检验,颜色变化最大的试管是_________。
(4)根据上述结果得出的实验结论是:不同来源的淀粉酶,虽然酶浓度相同,但活性不同。你认为造成实验中三种酶活性差异的根本原因是___________。
番茄果实成熟过程中,某种酶(PG)开始合成并显著增加,促使果实变红变软。但不利于长途运输和长期保鲜。科学家利用反义RNA技术(见图解),可有效解决此问题。该技术的核心是,从番茄体细胞中获得指导PG合成的信使RNA,继而以该信使RNA为模板人工合成反义基因并将之导入离体番茄体细胞,经组织培养获得完整植株。新植株在果实发育过程中,反义基因经转录产生的反义RNA与细胞原有mRNA(靶mRNA)互补形成双链RNA,阻止靶mRNA进一步翻译形成PG,从而达到抑制果实成熟的目的。请结合图解回答:
(1)反义基因像一般基因一样是一段双链的DNA分子,合成该分子的第一条链时,使用的模板是细胞质中的信使RNA,原料是四种 ,所用的酶是 。
(2)若要以完整双链反义基因克隆成百上千的反义基因,常利用 技术来扩增。
(3)如果指导番茄合成PG的信使RNA的碱基序列是A-U- C-C-A-G-G-U-C-,那么,PG反义基因的这段碱基对序列是_______________。
(4)合成的反义基因在导入离体番茄体细胞之前,必须进行表达载体的构建,该表达载体的组成,除了反义基因外,还必须有启动子、终止子以及_____________等,启动子位于基因的首端,它是 |酶识别和结合的部位。
(5)将人工合成的反义基因导入番茄叶肉细胞,最后达到抑制果实成熟,该生物发生了变异,这种可遗传的变异属于 。在受体细胞中该基因指导合成的最终产物是_________________。