如图:已知一次函数的图像分别交
轴、
轴于
、
两点,且点
在一次函数
的图像上,
⊥
轴于点
.
(1)求的值及
、
两点的坐标;
(2)如果点在线段
上,且
,求
点的坐标;
(3)如果点在
轴上,那么当△
与△
相似时,求点
的坐标.
先化简,再求值: ,其中 满足 .
计算: .
已知抛物线 .
(1)通过配方可以将其化成顶点式为 ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 轴 (填上方或下方),即 0(填大于或小于)时,该抛物线与 轴必有两个交点;
(2)若抛物线上存在两点 , , , ,分布在 轴的两侧,则抛物线顶点必在 轴下方,请你结合 、 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)
(3)根据二次函数(1)(2)结论,求证:当 , 时, .
已知 是 的任意一条直径.
(1)用图1,求证: 是以直径 所在直线为对称轴的轴对称图形;
(2)已知 的面积为 ,直线 与 相切于点 ,过点 作 ,垂足为 ,如图2.
求证:① ;
②改变图2中切点 的位置,使得线段 时, .
为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买 品牌足球共花费2880元, 品牌足球共花费2400元,且购买 品牌足球数量是 品牌数量的1.5倍,每个足球的售价, 品牌比 品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买 、 两种足球共50个,已知该店对每个足球的售价,今年进行了调整, 品牌比去年提高了 , 品牌比去年降低了 ,如果今年购买 、 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个 品牌足球?