如图所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(1)证明:AC⊥B1D;
(2)求直线B1C1与平面ACD1所成角的正弦值.
袋中有大小相同的5个球,其中黑球3个,白球2个,甲乙二人分别从中各取一个,甲先取(不放回)乙后取。规定:两人取到同颜色的球,由甲胜,取到不同颜色的球,则乙胜。
(1)分别求甲乙取到黑球的概率;
(2)甲乙二人谁胜的概率大,请说明理由。
如图在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,过D与PB垂直的平面分别交PB、PC于F、E。PD=DC。
(1)求证:DE⊥PC
(2)求证:PA//平面EDB;
(3)求二面角C—PB—D的大小。
已知函数时取最大值2。
是集合
中的任意两个元素,
的最小值为。
(1)求
(2)若的值。
过点P(-2,-3)作圆C:(x-4)2+(y-2)2=9的两条切线,切点分别为A、B.求:
(1)经过圆心C,切点A、B这三点的圆的方程;
(2)直线AB的方程;
(3)线段AB的长.
圆心在直线5x-3y-8=0上的圆与两坐标轴相切,求此圆的方程.