某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间
之间近似满足如图所示的曲线.其中
是线段,曲线段
是函数
是常数
的图象.
(1)写出服药后每毫升血液中含药量关于时间
的函数关系式;
(2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上
,为保持疗效,第二次服药最迟是当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少
?
(本小题16分)
首项为正数的数列满足
(I)证明:若为奇数,则对一切
都是奇数;
(II)若对一切都有
,求
的取值范围.
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量(简称血酒含量,单位是毫克/100毫升),当
时,为酒后驾车;当
时,为醉酒驾车 淮安市公安局交通管理部门于2010年6月的一天对某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,
处醉酒驾车的有4人,依据上述材料回答下列问题:
(1)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(2)从违法驾车的10人中抽取4人,求抽取到醉酒驾车人数
的分布列和期望;
(3)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.2和0.5,且每位驾驶员是否发生交通事故是相互独立的,依此计算被查处的10名驾驶员中至少有一人发生交通事故的概率
如图,已知是
底面为正方形的长方体,
,
,点
是
上的动点.
(1)试判断不论点在
上的
任何位置,是否都有平面
垂直于平面
?并证明你的结论;
(2)当为
的中点时,求异面直线
与
所成角的余弦值;
(3)求与平面
所成角的正切值的最大值.
已知等式,
其中ai(i=0,1,2,…,10)为实常数.
求:(1)(2)
的值;
求证 f(n)= 对任意自然数
,f(n)都能被8整除