一质量为m=2kg的木块放在水平地面上,如图所示。在力F作用下从静止开始匀加速运动,经时间t撤去力F,木块作匀减速运动直到停止。从木块开始运动起计时,下表给出了某些时刻木块的瞬时速度。
时刻(s) |
1.0 |
2.0 |
3.0 |
5.0 |
7.0 |
9.0 |
11.0 |
速度(m/s) |
4.0 |
8.0 |
12.0 |
14.0 |
10.0 |
6.0 |
2.0. |
根据表中的数据通过分析、计算下列问题:
(1)木块与地面间的动摩擦因数μ
(2)力F大小
(3)木块通过的总路程是多少?
如图所示,质量为m带电量为+q的小球静止于光滑绝缘水平面上,在恒力F作用下,由静止开始从A点出发到B点,然后撤去F,小球冲上放置在竖直平面内半径为R的光滑绝缘圆形轨道,圆形轨道的最低点B与水平面相切,小球恰能沿圆形轨道运动到轨道末端D,并从D点抛出落回到原出发点A处。整个装置处于电场强度为E=
的水平向左的匀强电场中,小球落地后不反弹,运动过程中没有空气阻力。求:AB之间的距离和力F的大小。
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点A(0,L)。一质量为m、电荷量为e的电子从A点以初速度v0平行于x轴正方向射入磁场,并从x轴上的B点射出磁场,射出B点时的速度方向与x轴正方向的夹角为60°。求:
(1)匀强磁场的磁感应强度B的大小;
(2)电子在磁场中运动的时间t。
如图甲所示,将一质量m=3kg的小球竖直向上抛出,小球在运动过程中的速度随时间变化的规律如图乙所示,设空气阻力大小恒定不变,g=10m/s2,求
(1)小球在上升过程中受到阻力f的大小。
(2)小球在4s末的速度v及此时离抛出点的高度h。
如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量m =0.04kg,电量q=+2×10-4C的可视为质点的带电滑块与弹簧接触但不栓接.某一瞬间释放弹簧弹出滑块,滑块从水平台右端A点水平飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下.已知AB的竖直高度h=0.45m,倾斜轨道与水平方向夹角为α=37°,倾斜轨道长为L=2.0m,带电滑块与倾斜轨道的动摩擦因数μ=0.5.倾斜轨道通过光滑水平轨道CD(足够长)与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程滑块的电量保持不变.只有在竖直圆轨道处存在场强大小为E=2×103V/m,方向竖直向下的匀强电场.cos37°=0.8,sin37°=0.6,重力加速度g取10 m/s2,求:
(1)被释放前弹簧的弹性势能?
(2)要使滑块不离开圆轨道,竖直圆弧轨道的半径应该满足什么条件?
(3)如果竖直圆弧轨道的半径R=0.9m,滑块进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的点P位置?
图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为L.开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有黏性物质的固定挡板粘住,在极短的时间内速度减为零,小球继续向左摆动,当轻绳与竖直方向的夹角θ=60°时小球到达最高点.求:
(1)滑块与挡板刚接触时(滑块与挡板还未相互作用)滑块与小球的速度分别为多少?
(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做的功.