解方程: .
计算
如图①,在 中, , , 是 的中点.小明对图①进行了如下探究:在线段 上任取一点 ,连接 .将线段 绕点 按逆时针方向旋转 ,点 的对应点是点 ,连接 ,得到 .小明发现,随着点 在线段 上位置的变化,点 的位置也在变化,点 可能在直线 的左侧,也可能在直线 上,还可能在直线 的右侧.
请你帮助小明继续探究,并解答下列问题:
(1)当点 在直线 上时,如图②所示.
① ;
②连接 ,直线 与直线 的位置关系是 .
(2)请在图③中画出 ,使点 在直线 的右侧,连接 .试判断直线 与直线 的位置关系,并说明理由.
(3)当点 在线段 上运动时,求 的最小值.
快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为 小时,快车行驶的路程为 千米,慢车行驶的路程为 千米.如图中折线 表示 与 之间的函数关系,线段 表示 与 之间的函数关系.
请解答下列问题:
(1)求快车和慢车的速度;
(2)求图中线段 所表示的 与 之间的函数表达式;
(3)线段 与线段 相交于点 ,直接写出点 的坐标,并解释点 的实际意义.
在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字.
(1)用树状图或列表等方法列出所有可能结果;
(2)求两次摸到不同数字的概率.