已知:如图所示,直线l的解析式为,并且与x轴、y轴分别交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/秒的速度向x轴正方向运动,问在什么时刻与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿射线BA方向以0.5个单位/秒的速度运动,设t秒时点P到动圆圆心的距离为s,求s与t的关系式;
(4)问在整个运动过程中,点P在动圆的圆面(圆上和圆内部)上,一共运动了多长时间?
分解因式(y2+3y)-(2y+6)2.
分解因式4a2bc-3a2c2+8abc-6ac2;
分解因式(m2+3m)2-8(m2+3m)-20;
(本小题满分12分)已知:抛物线的对称轴为
与
轴交于
两点,与
轴交于点
其中
、
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.
(3)若点是线段
上的一个动点(不与点O、点C重合).过点D作
交
轴于点
连接
、
.设
的长为
,
的面积为
.求
与
之间的函数关系式.试说明
是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.
(本小题满分12分)如图, 内接于
,
的平分线
与
交于点
,与
交于点
,延长
,与
的延长线交于点
,连接
是
的中点,连结
.
(1)判断与
的位置关系,写出你的结论并证明;
(2)求证:;
(3)若,求
的面积.