已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(21,0),C(0,6),动点D在线段AO上从点A以每秒2个单位向点O运动,动点P在线段BC上从点C以每秒1个单位向点B运动.若点D点P同时运动,当其中一个动点到达线段另一个端点时,另一个动点也随之停止.
(1)求点B的坐标;
(2)设点P运动了t秒,用含t的代数式表示△ODP的面积S;
(3)当P点运动某一点时,是否存在使△ODP为直角三角形,若存在,求出点P的坐标,若不存在说明理由.
化简:
化简:;
计算:;
如图,在等腰梯形ABCD中,AD∥BC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点.
(1)求证:四边形MENF是菱形;
(2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.
“情系玉树大爱无疆”,在玉树地震后,某中学全体师生踊跃捐款,向灾区人民献爱心. 为了了解该校学生捐款情况,对其中一个班50名学生的捐款数x(元)分五组进行统计,第一组:1≤x≤5,第二组:6≤x≤10,第三组:11≤x≤15,第四组:16≤x≤20;,第五组:x≥21,并绘制如下频数分布直方图(假定每名学生捐款数均为整数),解答下列问题:
(1)补全频数分布直方图(用阴影部分表示);
(2)该班一个学生说:“我的捐款数在班上是中位数”, 请给出该生捐款数可能的最小范围.
(3)已知这个中学共有学生1800人,请估算该校捐款数不少于16元的学生人数.