某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,若这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)每件售价定为多少元时,才能使利润为640元?(2)每件售价定为多少元时,才能使利润最大?
(1)(2)
解分式方程
(1)(2)
如下图是由三个小正方形组成的“L”形图,请你用三种方法分别在图中添加一个小正方形使它成为轴对称图形。
已知:直角梯形中,
∥
,∠
=
,以
为直径的圆
交
于点
、
,连结
、
、
.
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形:
_____________________,______________________ ;
(2)直角梯形中,以
为坐标原点,
在
轴正半轴上建立直角坐标系(如图2),若抛物线
经过点
、
、
,且
为抛物线的顶点.
①写出顶点的坐标(用含
的代数式表示)___________;
②求抛物线的解析式;
③在轴下方的抛物线上是否存在这样的点
,过点
作
⊥
轴于点
,使得以点
、
、
为顶点的三角形与△
相似?若存在,求出点
的坐标;若不存在,说明理由.
如图,已知,
两点的坐标分别为(
,
),(
,
),⊙
的圆心坐标为(
,
),并与
轴交于坐标原点
.若
是⊙
上的一个动点,线段
与
轴交于点
.
(1)线段长度的最小值是_________,最大值是_________;
(2)当点运动到点
和点
时,线段
所在的直线与⊙
相切,求由
、
、弧
所围成的图形的面积;
(3)求出△的最大值和最小值