已知各项均为正数的数列的前
项和为
,数列
的前
项和为
,且
.
⑴证明:数列是等比数列,并写出通项公式;
⑵若对
恒成立,求
的最小值;
⑶若成等差数列,求正整数
的值.
如图,已知DE⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。
(I)求证:AF//平面BCE;
(II)求证:平面BCE⊥平面CDE;
(III)求平面BCE与平面ACD所成锐二面角的大小。
已知一个圆的圆心为坐标原点,半径为
.从这个圆上任意一点
向
轴作垂线
,
为垂足.
(Ⅰ)求线段中点
的轨迹方程;
(Ⅱ)已知直线与
的轨迹相交于
两点,求
的面积
已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程
如图,已知三棱锥的侧棱
两两垂直,且
,
,
是
的中点。
(1)求异面直线与
所成角的余弦值;
(2)求直线和平面
的所成角的正弦值。
(3)求点E到面ABC的距离。
设:方程
有两个不等的负根,
:方程
无实根,若p或q为真,p且q为假,求
的取值范围.