游客
题文

如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m-4)2+n2-8n=-16,过C点作∠ECF分别交线段AB、OB于E、F两点.

(1)求A点的坐标;
(2)若OF+BE=AB,求证:CF=CE
(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE-EF的值不变;‚OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

已知a、b、c满足
求:(1)a、b、c的值;
(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;
若不能构成三角形,请说明理由.

方程:

解方程:

如图1,在平面直角坐标系xoy中,Rt△AOB的斜边OB在x轴上,其中∠ABO=30°,OB=4。

⑴直接写出,RtAOB的内心和P的坐标;
⑵如图2,若将RtAOB绕其直角顶点A顺时针旋转α度(0°<α<90°),得到RtACD,直角边AD与x轴相交于点N,直角边AC与y轴相交于点M,连结MN。设△MON的面积为S△MON,△AOB的面积为S△AOB,以点M为圆心,MO为半径作⊙M,
①当直线AD与⊙M相切时,试探求S△MON与S△AOB之间的关系。
②当S△MON=S△AOB时,试判断直线AD与⊙M的位置关系,并说明理由。

已知:正方形ABCD的边长为4,⊙O交正方形ABCD的对角线AC所在直线于点T,连接TO交⊙O于点S。

⑴如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连结DT、DS。
①试判断线段DT、DS的数量关系和位置关系;②求AS+AT的值;
⑵如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连结DT、DS。
求AS—AT的值。
⑶如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连结ET、ES。根据⑴、⑵计算,通过观察、分析,对线段AS、AT的数量关系提出问题并解答。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号