已知椭圆的左右两焦点分别为
,
是椭圆上一点,且在
轴上方,
.
(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过
的圆
的截
轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点
引圆
的两条切线,切点分别为
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
已知
(1),
(2)
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
(理科班)(12分)已知R,函数
e
.
(1)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;
(2)当m=0时,求证:.
(理科班)(12分)设函数f(x)=ln(2x+3)+x2
(1)讨论f(x)的单调性;
(2)求f(x)在区间[-1,0]的最大值和最小值.
求当m为何值时,f(x)=x2+2mx+3m+4.
(1)有且仅有一个零点;(2)有两个零点且均比-1大;