如图,二次函数的图象与x轴交于两个不同的点A(﹣2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、
(2)点D的坐标及直线BC的函数解析式;
(3)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(4)在(3)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.
已知:如图,在□ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)证明:△DCE≌△FBE;
(2)若EC=3,求AD的长.
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3。
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由。
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?
如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上。
(1)求证:BC是⊙O的切线;
(2)已知∠B=30°,CD=4,求线段AB的长。
某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援灾区。
(1)若随机选一名医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;
(2)求恰好选中医生甲和护士A的概率。