游客
题文

如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.

∵EF∥AD,(   )
∴∠2=.(两直线平行,同位角相等;)
又∵∠1=∠2,(     )
∴∠1=∠3.(    )
∴AB∥DG.(   )
∴∠BAC+=180°(   )
又∵∠BAC=70°,(   )
∴∠AGD=          

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(年新疆、生产建设兵团)如图,直线与x轴、y轴分别交于点A、B.抛物线经过A、B,并与x轴交于另一点C,其顶点为P,

(1)求a,k的值;
(2)在图中求一点Q,A.B、C为顶点的四边形是平行四边形,请直接写出相应的点Q的坐标;
(3)抛物线的对称轴上是否存在一点M,使△ABM的周长最小?若存在,求△ABM的周长;若不存在,请说明理由;
(4)抛物线的对称轴是上是否存在一点N,使△ABN是以AB为斜边的直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.

(年江西省南昌市)甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别中A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s.
(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);

(2)根据(1)中所画图象,完成下列表格:

(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围;
②当t=390s时,他们此时相遇吗?若相遇,应是第几次?若不相遇,请通过计算说明理由,并求出此时甲离A端的距离.

(年江西省南昌市)如图,已知直线与双曲线交于A(),B()两点两点(A与B不重合),直线AB与x轴交于P(,0),与y轴交于点C.

(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示之间的关系(不要求证明).

(年贵州省黔东南州)如图,已知反比例函数与一次函数的图象在第一象限相交于点A(1,﹣k+4).

(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积.

(年新疆、生产建设兵团)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.

品牌
进价/(元/件)
售价/(元/件)
A
50
80
B
40
65


(1)求W关于x的函数关系式;
(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价﹣进价)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号