如图,已知抛物线交 轴于 、 两点,交 轴于 点, 点坐标为 , , ,点 为抛物线的顶点.
(1)求抛物线的解析式;
(2) 为坐标平面内一点,以 、 、 、 为顶点的四边形是平行四边形,求 点坐标;
(3)若抛物线上有且仅有三个点 、 、 使得△ 、△ 、△ 的面积均为定值 ,求出定值 及 、 、 这三个点的坐标.
某学校为改善办学条件,计划采购 、 两种型号的空调,已知采购3台 型空调和2台 型空调,需费用39000元;4台 型空调比5台 型空调的费用多6000元.
(1)求 型空调和 型空调每台各需多少元;
(2)若学校计划采购 、 两种型号空调共30台,且 型空调的台数不少于 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
如图,直线 交 轴于点 ,交 轴于点 ,与反比例函数 的图象有唯一的公共点 .
(1)求 的值及 点坐标;
(2)直线 与直线 关于 轴对称,且与 轴交于点 ,与双曲线 交于 、 两点,求 的面积.
如图所示,为测量旗台 与图书馆 之间的直线距离,小明在 处测得 在北偏东 方向上,然后向正东方向前进100米至 处,测得此时 在北偏西 方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据 , )
先化简,再求值: ,其中 .