省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(Ⅰ) 请估计一下这组数据的平均数M;
(Ⅱ) 现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.
已知函数,其中
.
(1)当时,求函数
在
处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求
的取值范围;
(3)已知,如果存在
,使得函数
在
处取得最小值,试求
的最大值.
已知数列满足
,
,
,
是数列
的前
项和.
(1)若数列为等差数列.
①求数列的通项;
②若数列满足
,数列
满足
,试比较数列
前
项和
与
前
项和
的大小;
(2)若对任意,
恒成立,求实数
的取值范围.
如图,是椭圆
的左、右顶点,椭圆
的离心率为
,右准线
的方程为
.
(1)求椭圆方程;
(2)设是椭圆
上异于
的一点,直线
交
于点
,以
为直径的圆记为
. ①若
恰好是椭圆
的上顶点,求
截直线
所得的弦长;
②设与直线
交于点
,试证明:直线
与
轴的交点
为定点,并求该定点的坐标.
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
如图,四棱锥中,底面
是菱形,
,
,
是
的中点,点
在侧棱
上.
(1)求证:⊥平面
;
(2)若是
的中点,求证:
//平面
;
(3)若,试求
的值.