设各项均为正数的数列的前
项和为
,满足
且
构成等比数列.
(Ⅰ)证明:;
(Ⅱ)求数列的通项公式;
(Ⅲ)证明:对一切正整数,有
.
已知顶点在原点,焦点在轴上的抛物线被直线
截得的弦长为
,求抛物线的方程.
已知偶函数满足:当
时,
,当
时,
.
(1)求当时,
的表达式;
(2)试讨论:当实数满足什么条件时,函数
有4个零点,且这4个零点从小到大依次构成等差数列.
已知函数,点
为一定点,直线
分别与函数
的图象和
轴交于点
,
,记
的面积为
.
(1)当时,求函数
的单调区间;
(2)当时, 若
,使得
, 求实数
的取值范围.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,过点P(4,0)且不垂直于x轴直线
与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
如图1,在直角梯形中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
(1)求证:平面平面
;
(2)求直线与平面
所成角的正弦值;
(3)在棱上是否存在一点
,使得
到点
四点的距离相等?请说明理由.