如图所示,水平地面上有一辆固定有竖直光滑绝缘管的小车,管的底部有一质量m=0.2g、电荷量q=8×10-5C的小球,小球的直径比管的内径略小.在管口所在水平面MN的下方存在着垂直纸面向里、磁感应强度B1= 15T的匀强磁场,MN面的上方还存在着竖直向上、场强E=25V/m的匀强电场和垂直纸面向外、磁感应强度B2=5T的匀强磁场.现让小车始终保持v=2m/s的速度匀速向右运动,以带电小球刚经过场的边界PQ为计时的起点,测得小球对管侧壁的弹力FN随高度h变化的关系如图所示.g取10m/s2,不计空气阻力.求:
(1)小球刚进入磁场B1时的加速度大小a;
(2)绝缘管的长度L;
(3)小球离开管后再次经过水平面MN时距管口的距离
滑板运动是青少年喜爱的一项活动。如图16所示,滑板运动员以某一初速度从A点水平离开h=0.8m高的平台,运动员(连同滑板)恰好能无碰撞的从B点沿圆弧切线进入竖直光滑圆弧轨道,然后经C点沿固定斜面向上运动至最高点D。圆弧轨道的半径为1m,B、C为圆弧的两端点,其连线水平,圆弧对应圆心角θ=106°,斜面与圆弧相切于C点。已知滑板与斜面问的动摩擦因数为μ =,g=10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力,运动员(连同滑板)质量为50kg,可视为质点。试求:
(1)运动员(连同滑板)离开平台时的初速度v0;
(2)运动员(连同滑板)通过圆弧轨道最底点对轨道的压力;
(3)运动员(连同滑板)在斜面上滑行的最大距离。
如图所示,宽度为L=0.40 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B="0.40" T。一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v="0.50" m/s,在运动过程中保持导体棒与导轨垂直。求:
(1)在闭合回路中产生的感应电流的大小;
(2)作用在导体棒上的拉力的大小及拉力的功率;
(3)当导体棒移动50cm时撤去拉力,求整个运动过程中电阻R上产生的热量。
莫公园里有一个斜面大滑梯,一位小同学从斜面的顶端由静止开始滑下,其运动可视为匀变速直线运动。已知斜面大滑梯的高度为3m,斜面的倾角为370,这位同学的质量为30Kg,他与大滑梯斜面间的动摩擦因数为0.5。不计空气阻力,取g="10" m/s2,sin370=0.6,cos370=0.8。求:
(1)这位同学下滑过程中的加速度大小;
(2)他滑到滑梯底端时的速度大小;
(3)他滑到滑梯底端过程中重力的冲量大小。
如图甲所示, 光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有固定电阻R=0.4Ω。导轨上停放一质量m=0.1kg、电阻r=0.2Ω的金属杆ab,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向竖直向下。利用一外力F沿水平方向拉金属杆ab,使之由静止开始运动,电压传感器可将R两端的电压U即时采集并输入电脑,获得电压U随时间t变化的关系如图乙所示。
(1)试证明金属杆做匀加速直线运动,并计算加速度的大小;
(2)求第2s末外力F的瞬时功率;
(3)如果水平外力从静止开始拉动杆2s所做的功为0.3J,求回路中定值电阻R上产生的焦耳热是多少。
如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为 B ,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m 、电荷量为-q 的带电粒子从P孔以初速度V0沿垂直于磁场方向进人匀强磁场中,初速度方向与边界线的夹角θ=600,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ= 2 OC ,
不计粒子的重力,求:
( l )粒子从P运动到Q所用的时间 t 。
( 2 )电场强度 E 的大小
( 3 )粒子到达Q点时的动能EkQ