已知抛物线的顶点在坐标原点,焦点为,点
是点
关于
轴的对称点,过点
的直线交抛物线于
两点。
(Ⅰ)试问在轴上是否存在不同于点
的一点
,使得
与
轴所在的直线所成的锐角相等,若存在,求出定点
的坐标,若不存在说明理由。
(Ⅱ)若的面积为
,求向量
的夹角;
(本小题6分)如图,已知—正三棱锥P- ABC的底面棱长AB=3,高PO= ,求这个正三棱锥的表面积.
(本小题满分14分)已知函数.
(1)求的定义域;
(2)在函数的图像上是否存在不同的两点,使过此两点的直线平行于
轴;
(3)当满足什么关系时,
在
上恒取正值.
(本小题满分12分)
某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初时含杂质2%,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求?
(已知,
)
(本小题满分12分)如图,棱长为1的正方体中,
(1)求证:;
(2) 求三棱锥的体积.
(本小题满分12分)已知函数.
(1)判断的奇偶性,并证明你的结论;
(2)证明:函数在
内是增函数.