游客
题文

如图,已知曲线C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取线段OQ的中点A1,过A1作x轴的垂线交曲线C于P1,过P1作y轴的垂线交RQ于B1,记a1为矩形A1P1B1Q的面积.分别取线段OA1,P1B1的中点A2,A3,过A2,A3分别作x轴的垂线交曲线C于P2,P3,过P2,P3分别作y轴的垂线交A1P1,RB1于B2,B3,记a2为两个矩形A2P2B2 A1与矩形A3P3B3B1的面积之和.以此类推,记an为2n-1个矩形面积之和,从而得数列{an},设这个数列的前n项和为Sn

(I)求a2与an
(Ⅱ)求Sn,并证明Sn

科目 数学   题型 解答题   难度 中等
知识点: 等比数列
登录免费查看答案和解析
相关试题

已知函数.
(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令,若不等式恒成立,求实数的取值范围.

已知椭圆的左、右焦点分别为,P为椭圆上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

已知数列满足.
(1)求数列的通项公式;
(2)令,数列{bn}的前n项和为Tn,试比较Tn的大小,并予以证明.

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求二面角的余弦值.

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:

一次购物量(件)
1≤n≤3
4≤n≤6
7≤n≤9
10≤n≤12
n≥13
顾客数(人)

20
10
5

结算时间(分钟/人)
0.5
1
1.5
2
2.5

已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定的值;
(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号