电子蛙跳游戏是:青蛙第一步从如图所示的正方体顶点
起跳,每步从一顶点跳到相邻的顶点.
(1)求跳三步跳到的概率
;
(2)青蛙跳五步,用表示跳到过
的次数,求随机变量
的概率分布及数学期望
.
双曲线 的左、右焦点分别为 , ,直线 过 且与双曲线交于 , 两点.
(1)直线 的倾斜角为 ,△ 是等边三角形,求双曲线的渐近线方程;
(2)设 ,若 的斜率存在,且 ,求 的斜率.
有一块正方形 , 所在直线是一条小河,收获的蔬菜可送到 点或河边运走.于是,菜地分别为两个区域 和 ,其中 中的蔬菜运到河边较近, 中的蔬菜运到 点较近,而菜地内 和 的分界线 上的点到河边与到 点的距离相等,现建立平面直角坐标系,其中原点 为 的中点,点 的坐标为 ,如图
(1)求菜地内的分界线 的方程;
(2)菜农从蔬菜运量估计出 面积是 面积的两倍,由此得到 面积的经验值为 .设 是 上纵坐标为1的点,请计算以 为一边,另一边过点 的矩形的面积,及五边形 的面积,并判断哪一个更接近于 面积的“经验值”.
将边长为1的正方形 (及其内部)绕 旋转一周形成圆柱,如图, 长为 , 长为 ,其中 与 在平面 的同侧.
(1)求三棱锥 的体积;
(2)求异面直线 与 所成的角的大小.
已知函数 .
(1)当 时,求不等式 的解集;
(2)设函数 ,当 时, ,求 的取值范围.
在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点,以 轴的正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)写出 的普通方程和 的直角坐标方程;
(2)设点 在 上,点 在 上,求 的最小值及此时 的直角坐标.