如图所示,已知圆为圆上一动点,点
是线段
的垂直平分线与直线
的交点.
(1)求点的轨迹曲线
的方程;
(2)设点是曲线
上任意一点,写出曲线
在点
处的切线
的方程;(不要求证明)
(3)直线过切点
与直线
垂直,点
关于直线
的对称点为
,证明:直线
恒过一定点,并求定点的坐标.
(本小题满分12分)
已知.
(1)求的值;
(2)求的值.
(本小题满分14分)
已知函数(
,
,
且
)的图象在
处的切线与
轴平行.
(I) 试确定、
的符号;
(II) 若函数在区间
上有最大值为
,试求
的值.
(本小题满分14分)
在数列中,
(1)求的值;
(2)证明:数列是等比数列,并求
的通项公式;
(3)求数列。
(本小题满分14分)
已知圆:
和圆
,直线
与圆
相切于点
;圆
的圆心在射线
上,圆
过原点,且被直线
截得的弦长为
.
(Ⅰ)求直线的方程;
(Ⅱ)求圆的方程.
(本小题满分14分)
如图,已知正三棱柱的底面边长是
,
、E是
、BC的中点,AE=DE
(1)求此正三棱柱的侧棱长;
(2)求正三棱柱表面积.