如图四棱锥
中,底面
是平行四边形,
平面
,垂足为
,
在
上且
,
,
,
是
的中点,四面体
的体积为
.
(1)求过点P,C,B,G四点的球的表面积;
(2)求直线
到平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使

,若存在,确定点
的位置,若不存在,说明理由.
定议在
上的单调函数
满足
,且对任意
都有
(1)求证:
为奇函数;
(2)若
对任意
恒成立,求实数
的取值范围.
若
的图象关于直线
对称,其中
(1)求
的解析式;
(2)将
的图象向左平移
个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到
的图象;若函数
的图象与
的图象有三个交点且交点的横坐标成等比数列,求
的值.
已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品
千件,并且全部销售完,每千件的销售收入为
万元,且
(1)写出年利润
(万元)关于年产品
(千件)的函数解析式;
(2)年产量为多少千件时,该企业生产此产品所获年利润最大?
(注:年利润=年销售收入-年总成本)
设函数
,其中,角
的顶点与坐标原点重合,始边与
轴非负半轴重合,终边经过点
,且
.
(1)若
点的坐标为(-
),求
的值;
(2)若点
为平面区域
上的一个动点,试确定角
的取值范围,并求函数
的值域.
设命题p:函数
的定义域为R;命题q:
对一切的实数
恒成立,如果命题“p且q”为假命题,求实数a的取值范围.