某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作
的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:
),
(单位:弧度).
(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.
已知A(1,3)、B(-2,0)、C(2,1)为三角形的三个顶点,L、M、N分别是线段BC、CA、AB上的点,满足|||
|=|
||
|=|
||
|=13,求L、M、N三点的坐标.
已知O(0,0)、A(2,-1)、B(1,3)、=
+t
,求
(1)t为何值时,点P在x轴上?点P在y轴上?点P在第四象限?
(2)四点O、A、B、P能否成为平行四边形的四个顶点,说明你的理由.
平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题:
(1)求3a+b-2c;
(2)求满足a=mb+nc的实数m,n;
(3)若(a+kc)∥(2b-a),求实数k.
已知四点A(x,0)、B(2x,1)、C(2,x)、D(6,2x).
(1)求实数x,使两向量、
共线.
(2)当两向量与
共线时,A、B、C、D四点是否在同一条直线上?
a≠0,b≠0,a与b不平行.求证:a+b与a-b不平行.