游客
题文

如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.
(Ⅰ)求水面宽;
(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?

(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?

如图1,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:
(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.

已知函数的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在中,角对边为,且满足.

(Ⅰ)求的面积;
(Ⅱ)求函数的单调递增区间.

已知函数,其中.
(Ⅰ)若,求函数的极值点;
(Ⅱ)若在区间内单调递增,求实数的取值范围.

已知圆心为点的圆与直线相切.

(1)求圆的标准方程;
(2)对于圆上的任一点,是否存在定点(不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号