如图所示,一光滑绝缘圆管轨道位于竖直平面内,半径为0.2m。以圆管圆心O为原点,在环面内建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直于环面向外的匀强磁场。一带电量为+1.0C、质量为0.1kg的小球(直径略小于圆管直径),从x坐标轴上的b点由静止释放,小球刚好能顺时针沿圆管轨道做圆周运动。(重力加速度g取10m/s2)
(1)求匀强电场的电场强度E;
(2)若第二次到达最高点a时,小球对轨道恰好无压力,求磁感应强度B ;
(3)求小球第三次到达最高点a时对圆管的压力。
如图所示,质量M=8.0kg、长L=2.0m的薄木板静置在水平地面上,质量m=0.50kg的小滑块(可视为质点)以速度v0=3.0m/s从木板的左端冲上木板。已知滑块与木板间的动摩擦因数μ=0.20,重力加速度g取10m/s2。
(1)若木板固定,滑块将从木板的右端滑出,求:
a.滑块在木板上滑行的时间t;
b.滑块从木板右端滑出时的速度v。
(2)若水平地面光滑,且木板不固定。在小滑块冲上木板的同时,对木板施加一个水平向右的恒力F,如果要使滑块不从木板上掉下,力F应满足什么条件?(假定滑块与木板之间最大静摩擦力与滑动摩擦力相等)
假设地球可视为质量均匀分布的球体。已知地球质量为M,半径为R,自转的周期为T,引力常量为G。求:
(1)地球同步卫星距离地面的高度H;
(2)地球表面在两极的重力加速度g;
(3)地球表面在赤道的重力加速度g0。
一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3.0 m/s2的加速度由静止开始做匀加速直线运动,恰在这时,某人骑一辆自行车以6.0 m/s的速度匀速驶来,从后边超过汽车。求:
(1)汽车追上自行车之前,两者间的最大距离;
(2)汽车启动后追上自行车所需的时间。
如图所示,一个质量为m的小球用一根长为l的细绳吊在天花板上,给小球一水平初速度,使它做匀速圆周运动,小球运动所在的平面是水平的。已知细绳与竖直方向的夹角为θ,重力加速度为g。求:
(1)细绳对小球的拉力;
(2)小球做圆周运动的线速度。
质量为2.0kg的物体置于水平粗糙地面上,用20N的水平拉力使它从静止开始运动,第4.0s末物体的速度达到24m/s,此时撤去拉力。求:
(1)物体在运动中受到摩擦力的大小;
(2)撤去拉力后物体能继续滑行的距离。