小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)
(本题6分)如图,在平面内有A、B、C三点.
(1)画直线AC,线段BC,射线AB,过C作CH⊥AB于H;
(2)取线段BC的中点D,连结AD.(保留作图痕迹,不要求写作法)
先化简,再求值.(每小题4分,共8分)
(1),其中x=4;
(2),其中x=-1,y=-2.
解方程(每小题4分,共8分)
(1);
(2).
小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,购买涂料费用为4800 元,粉刷面积是150 m2,最后计算时,有以下几种方案:
方案一:按工计算,每个工30元(1个人干一天是1个工);
方案二:按涂料费用算,涂料费用的30%作为工钱;
方案三:按粉刷面积算,每平方米付工钱12元:
请你帮小红家出主意,选择最合算的付钱方案,是元.
如图,直线l1:y=3x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;
(2)不解关于x,y的方程组,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.