游客
题文

小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知:如图,在四边形ABCD中,AC与BD相交与点O,AB∥CD,
求证:四边形ABCD是平行四边形。

如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足

(1)求点,点的坐标.
(2)若点点出发,以每秒1个单位的速度沿射线运动,连结.设的面积为,点的运动时间为秒,求的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.

某工厂计划为震区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套型桌椅(一桌三椅)需木料,工厂现有库存木料
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往震区,已知每套型桌椅的生产成本为100元,运费2元;每套型桌椅的生产成本为120元,运费4元,求总费用(元)与生产型桌椅(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)
(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.

已知:正方形中,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点
绕点旋转到时(如图1),易证

(1)当绕点旋转到时(如图2),线段之间有怎样的数量关系?写出猜想,并加以证明.
(2)当绕点旋转到如图3的位置时,线段之间又有怎样的数量关系?请直接写出你的猜想.

武警战士乘一冲锋舟从地逆流而上,前往地营救受困群众,途经地时,由所携带的救生艇将地受困群众运回地,冲锋舟继续前进,到地接到群众后立刻返回地,途中曾与救生艇相遇.冲锋舟和救生艇距地的距离(千米)和冲锋舟出发后所用时间之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.

(1)请直接写出冲锋舟从地到地所用的时间.
(2)求水流的速度.
(3)冲锋舟将地群众安全送到地后,又立即去接应救生艇.已知救生艇与地的距离(千米)和冲锋舟出发后所用时间之间的函数关系式为,假设群众上下船的时间不计,求冲锋舟在距离地多远处与救生艇第二次相遇?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号