如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角.
(1)求证:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求的值;
(2) 若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所
获得的利润最大.(利润=销售额-成本)
已知点A 和B
,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与经过点(2,0)且倾斜角为
的直线交于D、E两点
(1)求点C的轨迹方程;
(2)求线段DE的长
设椭圆C: 过点(0,4),(5,0).
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被椭圆C所截线段的中点坐标
甲、乙两射击运动员分别对一目标射击次,甲射中的概率为
,乙射中的概率为
,求:
(1)人都射中目标的概率;
(2)人中恰有
人射中目标的概率;
(3)人至少有
人射中目标的概率
设函数,其中
.
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)求函数的极值点;
(Ⅲ)证明对任意的正整数,不等式
都成立.