M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作。
(I)求男生成绩的中位数及女生成绩的平均值;
(II)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?
为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
处罚金额![]() |
0 |
5 |
10 |
15 |
20 |
会闯红灯的人数![]() |
80 |
50 |
40 |
20 |
10 |
若用表中数据所得频率代替概率.现从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
(Ⅰ)求这两种金额之和不低于20元的概率;
(Ⅱ)若用X表示这两种金额之和,求X的分布列和数学期望.
数列的前
项和记为
,已知
.
(Ⅰ)求,
,
的值,猜想
的表达式;
(Ⅱ)请用数学归纳法证明你的猜想.
已知极坐标的极点在平面直角坐标系的原点O处,极轴与轴的正半轴重合,且长度单位相同.直线
的极坐标方程为:
,曲线C:
(
为参数),其中
.
(Ⅰ)试写出直线的直角坐标方程及曲线C的普通方程;
(Ⅱ)若点P为曲线C上的动点,求点P到直线距离的最大值.
已知复数,
是实数,
是虚数单位.
(1)求复数;
(2)若复数所表示的点在第一象限,求实数
的取值范围.
已知关于x的不等式的解集不是空集.
(1)求参数m的取值范围的集合M;
(2)设a,bM,求证:a+b<ab+1.