已知函数.
(1)求函数的最小正周期;
(2)求函数在区间
上的最小值和最大值.
从数列中抽出一些项,依原来的顺序组成的新数列叫数列
的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)若是无穷等比数列,首项
,公比
且
,则数列
是否存在一个子列
为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.
如图,已知椭圆E:的离心率为
,过左焦点
且斜率为
的直线交椭圆E于A,B两点,线段AB的中点为M,直线
:
交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数k,使得三角形BDM的面积是三角形ACM的3倍?若存在,求出k的值;
若不存在,说明理由.
已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得
,求
的取值范围.
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.
(1)求证:DA1⊥ED1;
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).