有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线
上,且点
与点
重合。现固定
,将
以每秒1个单位长度的速度在
上向右平移,当点
与点
重合时运动停止。设平移时间为
秒。
(1)当为 秒时,
边恰好经过点
;当
为 秒时,运动停止;
(2)在平移过程中,设
与
重叠部分的面积为
,请直接写出
与
的函数关系式,并写出
的取值范围;
(3)当停止运动后,如图2,
为线段
上一点,若一动点
从点
出发,先沿
方向运动,到达点
后再沿斜坡
方向运动到达点
,若该动点
在线段
上运动的速度是它在斜坡
上运动速度的2倍,试确定斜坡
的坡度,使得该动点从点
运动到点
所用的时间最短。(要求,简述确定点
位置的方法,但不要求证明。)
已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,求AB和CD之间的距离.
已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)证明四边形ABDF是平行四边形;
(2)若AF=DF=5,AD=6,求AC的长.
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
因式分解:
(1)4a2b2﹣(a2+b2)2;
(2)(a+x)4﹣(a﹣x)4.
(3)分解因式:(x﹣y)2﹣4(x﹣y﹣1)
(4)a2﹣4ax+4a;
(5)(x2﹣1)2+6(1﹣x2)+9.