某商家经销一种绿茶,用于装修门面已投资3000元。已知绿茶每千克成本50元,在第一个月的试销时间内发现。销量w(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示
销售单价x(元/ kg) |
…… |
70 |
75 |
80 |
85 |
90 |
…… |
销售量w(kg) |
…… |
100 |
90 |
80 |
70 |
60 |
…… |
设该绿茶的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)。
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?
某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:
(1)求出足球和篮球的单价;
(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?
(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?
(1)已知方程x2+px+q=0(p2-4q≥0)的两根为x1、x2,求证:x1+x2=-p,x1·x2=q.
(2)已知抛物线y=x2+px+q与x轴交于点A、B,且过点(―1,―1),设线段AB的长为d,当p为何值时,d2取得最小值并求出该最小值.
如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.
在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.