已知函数的定义域为
,且
的图象连续不间断. 若函数
满足:对于给定的
(
且
),存在
,使得
,则称
具有性质
.
(Ⅰ)已知函数,
,判断
是否具有性质
,并说明理由;
(Ⅱ)已知函数 若
具有性质
,求
的最大值;
(Ⅲ)若函数的定义域为
,且
的图象连续不间断,又满足
,
求证:对任意且
,函数
具有性质
.
已知是定义在
上的奇函数,当
时,
。
(1)求函数的解析式;
(2)求不等式的解集。
已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1.
(1)若直线AP的斜率为k,且|k|∈[,
],求实数m的取值范围;
(2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.
已知双曲线x2-=1,双曲线存在关于直线l:y=kx+4的对称点,求实数k的取值范围.
如图,双曲线=1(b∈N*)的两个焦点为F1、F2,P为双曲线上一点,|OP|<5,|PF1|、|F1F2|、|PF2|成等差数列,求此双曲线方程.
设双曲线C:-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(1)求双曲线C的离心率e的取值范围;
(2)设直线l与y轴的交点为P,且=
,求a的值.