如图1,若△ABC和△ADE为等腰直角三角形,AB=AC,AD=AE,M,N分别EB,CD的中点.
(1)易证:①CD="BE" ;②△AMN是 三角形;
(2)当把△ADE绕A点旋转到图2的位置时,
①求证:CD=BE;
②判断△AMN的形状,并证明你的结论;
(3)当△ADE绕A点旋转到图3的位置时,(2)中的结论是否成立?直接写出即可,不要求证明;并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比.
如图,AB是半圆O的直径,点P(不与点A,B重合)为半圆上一点.将图形沿BP折叠,分别得到点A,O的对称点,
.设∠ABP =α.
(1)当α=10°时,°;
(2)当点落在
上时,求出
的度数.
已知二次函数.
(1)将化成
的形式;
(2)当时,
的最小值是,最大值是;
(3)当时,写出
的取值范围.
如图,正方形网格中的每个小正方形的边长都是1,顶点叫做格点.△ABC的三个顶点A,B,C都在格点上.将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过的区域的面积.
如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交轴
于两点,点
在⊙
上.
(1)求出两点的坐标;
(2)试确定经过A、B且以点P为顶点的抛物线解析式;
(3)在该抛物线上是否存在一点,使线段
与
互相平分?若存在,求出点
的坐标;若不存在,请说明理由.
如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上从点A运动到点B,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.
(1)求证:CE=CF;
(2)求线段EF的最小值;
(3)当点D从点A运动到点B时,线段EF扫过的面积的大小是 .